
NASA Contractor Report 191469

p. ._55

Advanced Transport Operating System (ATOPS)
Utility Library Software Description

Winston C. Clinedinst
Christopher J. Slominski
Richard W. Dickson
David A. Wolverton

Computer Sciences Corporation
Hampton, Virginia

Prepared For
Langley Research Center
under Contract NAS1-19038
April 1993

(NASA-CR-191469) AOVANCED
TRANSPORT OPERATING SYSTEM (ATOPS)
UTILITY LIBRARY SOFTgARE
OESCRIPTION Final Report, Jun. 1988
- Nov. 1991 (Computer Sciences
Corp.) 55 p

N93-32218

Unclas

G3/06 0175553

rU/LRA
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

8_

TABLE OF CONTENTS

INTRODUCTION .. 1

ANGL .. 2

ANGL360 .. 3

ASSIGN ... 4

BCDTIM .. 5

C_HDL ... 6

REPORT_CHECK ... 7

REPORT ... 8

SHOW_Tr .. 9

EXCEPTIONS ... 10

CLIP ... 11

CLRBUF .. 13

DEGVAL .. 14

FMTDEG .. 15

FMTTIM .. 16

FRMFRQ .. 17

GET .. 18

GET_CHAR .. 19

GRID ... 20

LOCK .. 21

LUNAVA .. 22

LURTE ... 23

LURWY ... 24

LUSID .. 25

MAG_VAR .. 26

MAPCOM ... 27

MXM ... 28

MXT ... 29

MXV ... 30

OTS$FLOAT ... 31

P_LIST .. 32

POLAR ... 33

POSBTS... 34

RET .. 35

SCOS 36

TIMVAL .. 37

UNPK 38

UVC ... 39

VCP .. 40

VDP .. 41

VMAX .. 42

VMG " 43

VMIN .. 44

VSUM .. 45

VXM ... 46

XYZ .. 47

APPENDIX A ... 48

11

ii

INTRODUCTION

This documentdescribestheroutinesandfunctionsof theUtility Library which areused
by the flight softwareprocessesin theDigital EquipmentCorporationVAX computerson the
TransportSystemsResearchVehicle. The softwaredescribedherein is part of the baseline
systemreleasedin November1991.

Modules describedin this documentareorganizedalphabeticallyby name. Refer to
Appendix A for a crossreference.

BIBLIOGRAPHY:
Digital EquipmentCorp.,VAX/VMS Manuals,Digital EquipmentCorp. 1984.

2

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

ANGL (Function)

ANGL.MAR

To convertan anglefrom the360° scaleto the +180 ° scale.

See subroutine/function cross reference (appendix A).

CALLING SEQUENCE: angle = ANGL(angle)

Where: angle = 32-bit floating point angle in degrees

CALLS TO: None

DESCRIPTION:

This routine accepts any 32-bit floating-point number as input and returns an angle in the

+180 ° range. If the absolute value of the number is greater than 360 ° , the correct quadrant is

determined by using a modulo technique and the resultant +180 ° value is returned. No error

checking is performed by this function. An assumption is made that the argument is in 32-bit

floating-point format.

i i_ii_!i _ _._= _ -r_¸_

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

ANGL360 (Function)

ANGL360.MAR

To convertinput angleto +360 degree range.

None

CALLING SEQUENCE: Angle -- ANGL360(Angle)

Where: Angle = 32-bit floating point value in degrees

CALLS TO: None

DESCRIPTION:

This routine accepts any single precision floating-point number as input and returns an

angle in the +360 ° range. The sign of the output is determined by the sign of the input. No

error checking is performed by this function, and an assumption is made that the argument is in

32-bit floating-point format.

4

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY"

ASSIGN

ASSIGN.FOR

To assignanequivalentnamein the default logical nametablefor a
process.

Seesubroutine/functioncrossreference(appendixA).

CALLING SEQUENCE: CALL ASSIGN(logical_name,equiv_name)

Where: logical_name= logical nameto bedefined(or presentlyexisting)
equiv_name= equivalencenameto bedefined for the logical name.

CALLS TO: SYS$CRELNM,LIB$SIGNAL

DESCRIPTION:
This routine uses the equiv_nameparameterto createan item list and invokes the

$CRELNM systemservice(seeVAX/VMS SystemServiceReferenceManual for moredetails)
to createtheequivalencename. If anerroris encountered,theLIB$SIGNAL library routine(see
VAX/VMS Run Time Library RoutinesReferenceManualfor moredetails)is called to log an
errormessage.

MODULE NAME: BCDTIM

FILE NAME: BCDTIM.FOR

PURPOSE: To convert the Data Acquisition System (DAS) time from BCD to

ASCII and place it in a byte string.

CALLED BY: IDENT, REPORT

CALLING SEQUENCE: CALL BCDTIM(h, ms, label)

Where: h = word containing hours digits and minutes digits.

ms = word containing seconds digits

label = 7 byte output string in following format: HHMM:SS

CALLS TO: MVBITS (see Programming in VAX FORTRAN for details)

DESCRIPTION:

Each nibble of the H and MS word is a BCD digit in the range 0-9. Subroutine MVBITS

is called to extract each nibble. An octal 60 is then added to this BCD value to create an ASCII

byte that represents the BCD digit. BCDTIM outputs a 7 byte character string in the following

format: HHMM:SS. No error checking is performed.

6

MODULE NAME: C_HDL (Function)

FILE NAME: C_HDL.FOR

PURPOSE: To interruptVAX/VMS exceptionprocessing,providea brief display
on the error loggingdevice,and recordexpanded datain a log file
for later analysis.

CALLED BY: Seesubroutine/functioncrossreference(appendixA).

CALLING SEQUENCE: A. FORTRAN:
CALL LIB$ESTABLISH(C_HDL)

B. MACRO:
MOVAB C_HDL,(FP)

CALLS TO: LIBSIM_TRAP,LIBFIXUP_FLT,SYS$GETTIM,SYS$PUTMSG,
LIB$MATCH_COND

DESCRIPTION:
C_HDL is ausersuppliedVAX/VMS conditionhandlerdesignedto processthe "MTH$"

utility type errors;floating-point overflow, anddivide by zero (both trap and fault) andothers.
For the ATOPS implementationeachprocessusesa call to "LIB$ESTABLISH" to establish
C_HDL as the default exceptionhandler. (Seethe VAX/VMS Run-TimeLibrary Manual for
moredetails).

EachtimeC_HDL is invokedacounteris incremented.Thereforeeachprocessusingthis
exception handler has the option of saving this counter in a global section for real time
monitoring purposes.C_HDL containsthreeotherusersuppliedroutines: REPORT_CHECK,
REPORT,and SHOW_TT. When C_HDL receivescontrol, a subsidiaryroutine is invoked
dependingon the typeof conditioncausingtheexception. If theerroroccurredin mathematics
procedures(with theexceptionof squareroot of a negativenumber)R0 andR1 areset to zero
andcontrol is passedto REPORT. If theexceptionwascausedby an attemptto computethe
squareroot of a negativenumber,a zerovalue and the SS$_CONTINUEstatusis returned,
essentiallyignoring the exception. If the exceptionis not one that C_HDL was designedto
process,a statusof SS$RESIGNALis returnedwhich causesthe VAX/VMS default condition
handlerto servicethe exception.

For floating overflow fault (SS$_FLTOVF)andfloating divide_fault (SS$_FLTDIV_F)
the VAX/VMS Library Routine LIB$SIM_TRAP is called to convert the floating faults to
floating trapswhich meanstheseinstructionswill beexecutedagainresultingin C_HDL being
calledagainandthis typeof exceptionbeingcountedtwice. Subsequentlycontrol is passedto
REPORT_CHECK.For thefollowing traps- floatingoverflow, floating/decimaldivided by zero,

integer divide by zero, integer overflow - control is passed directly to REPORT_CHECK.

For a reserved operand (SS$_ROPPAND) the VAX/VMS LIB$FIXUP_FLT routine is

called to change -0 to +0 and processing continues with C_HDL returning the SS$_CONTINUE
status.

MODULE NAME:

FILE NAME:

PURPOSE:

REPORT_CHECK(Function)

C_HDL.FOR

To determineif an identical exceptionhasoccuredin previous 15
seconds.

CALLED BY: C_HDL

CALLING SEQUENCE:c_hdl = REPORT_CHECK(sig)

Where: c_hdl = returnstatusof SS$_CONTINUEor SS$_RESIGNAL

CALLS TO: None

DESCRIPTION:
REPORT_CHECKis afunctionthatdetermineswhetherornot theidenticalexceptionhas

occurredpreviously and ensuresthat 15 secondshave elapsedprior to re-logging the error
message.If it is the sameexceptionand 15secondshavenot elapsed,thenREPORT_CHECK
doesnot log the messageandretumsthe SS$_CONTINUEstatus.

If it is a newexceptionor 15secondshaveelapsed,theconditionis changedto a warning
only and REPORT is called to log the message. Then REPORT_CHECK returns the
SS$_RESIGNALstatusto causethecondition to be resignaledto the next handler.

MODULE NAME: REPORT

FILE NAME: C_HDL.FOR

PURPOSE: To outputanexceptionmessage.

CALLED BY: REPORT_CHECK

CALLING SEQUENCE: CALL REPORT(sig)

Where: sig = theexceptionbeingsignaled

CALLS TO: BCDTIM, SYS$PUTMSG

DESCRIPTION:
REPORTis a subroutinethatcalls the SYS$PUTMSGsystemserviceto log anerror in

the log file for a processand to display an abbreviatederror messageon the systemconsole
displayunit. The actualdisplay is accomplishedby the SHOW_TI"function.

BCDTIM is then called to format the systemtime acquiredfrom the Data Acquisition
Systemfor atimereferencingentry placedin the log file for aprocessby calling SYS$PUTMSG
a secondtime.

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

CALLING SEQUENCE:

Where:

CALLS TO:

DESCRIPTION:

SHOW_TT(Function)

C_HDL.FOR

To ouputexceptionmessage.

SYS$PUTMSG

CALL SYS$PUTMSG(sig,SHOW_TT,,)

sig = theexceptionbeingsignaled
SHOW_TT= nameof actionroutinefor SYS$PUTMSG

None

This is a function which outputsan abbreviatederror messageon the systemdisplay
device. This function is activatedwhenSYS$PUTMSGis calledwith SHOW_T'["specifiedas
anactionroutine. The abbreviatedmessagehastheformat

'system error' in 'process'

where: 'system error' is a VAX/VMS supplied error,

'process' is the name of the process in which the error occurred.

10

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

EXCEPTIONS

EXCP.MSG

Usedby C_HDL to createsysteminformationalmessages.

N/A

CALLING SEQUENCE: N/A

CALLS TO: None

DESCRIPTION:
This modulecontainsinstructionsusedby the VAX/VMS Messagefacility to createan

object file usedfor signalinguserdefinedexceptions. The only userdefinedexceptionin the
systemis the informationalmessageprefixedto exceptionsreportedin the processerror logs.
The prefixedmessageshowsthe VAX time anddate,andtheDAS time asfollows:

%LOG-I-TIME, Error loggedat 20-JUL-199116:38:39 (2240:25)

This codeis accessedby the condition handleron the file C_HDL.FOR by the global symbol
LOG_TIME which is createdby the VAX/VMS messagefacility.

11

MODULE NAME: CLIP (Function)

FILE NAME: CLIP .FOR

PURPOSE: To process an x,y input pair to ensure that the vector lies within a
defined box.

CALLED BY: See subroutine/function cross reference (appendix A).

CALLING SEQUENCE: Status = CLIP (x, y, left, fight, top, bottom)

Where: Status = return code from CLIP as follows:

-1 - none of vector lies within box

0 - vector within box

1 - first point clipped to edge of box

2 - second point clipped to edge of box

3 - both points clipped to edge of box

x = array of 2 x coordinates

y = array of 2 y coordinates
left = left side of box

fight = right side of box

top = top of box
bottom = bottom of box

CALLS TO: POSBTS

DESCRIPTION:

This function receives, as input, an x,y coordinate pair defining a line segment. It also

receives coordinates defining all sides of a box (left, right, top, bottom) into which the line

segment must fit. The POSBTS function is called to determine in which quadrant the vector

endpoints lie. A return code of 0 indicates the endpoints are entirely inside the box. All possible

return codes from POSBTS are indicated in the following diagram:

top

bottom

left fight

1001 1000 1010

0001 0000 0010

0101 0100 0110

12

CLIP then computes the slope of the line using the formula: m-- y2-y7 and uses this
x2-xl

to eliminate any points that lie outside the screen boundaries. This is done iteratively until the

line lies inside the boundaries and the appropriate code is returned to the user.

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

CLRBUF

CLRBUF.MAR

To fill a contiguous block of memory with zeroes.

See subroutine/function cross reference (appendix A).

13

CALLING SEQUENCE: CALL CLRBUF (block, length)

Where: block = memory area to be cleared

length = 16-bit integer word containing the number of bytes to clear

CALLS TO: None

DESCRIPTION:

This routine uses the MACRO instruction 'MOVC' to move zeroes to the starting address

specified in the first argument for the number of consecutive byte locations specified in the

second parameter. No error checking is performed.

14

MODULE NAME: DEGVAL (Function)

FILE NAME: DEGVAL.MAR

PURPOSE: To convert an ASCII string of LAT or LON to floating point.

CALLED BY: See subroutine/function cross reference (appendix A).

CALLING SEQUENCE: value -- DEGVAL (string, length, error)

Where: string = byte array containing LAT or LON

length = 16-bit integer string length

error = 1-byte return code

CALLS TO: DIGITS, OTS$CVT_TU_L

DESCRIPTION:

This routine accepts a character string latitude or longitude value and returns the floating

point representation in degrees. The length field is checked to determine whether the input is

a latitude or longitude (seven characters denotes a latitude, eight characters denotes a longitude).

Further error checking is performed to ensure that the seven character latitude begins with either

N or S and that the eight character longitude begins with either E or W. The latitude is further

checked to ensure that it does not exceed 89* 59' 59" and that longitude is checked to ensure
it does not exceed 179" 59' 59".

An embedded subroutine, DIGITS, is called to convert the ASCII characters one section

at a time - degrees, minutes, seconds. These values are then positionally adjusted and summed

to form the resultant latitude or longitude. If any of the error checks fail, a one byte logical error

flag is set true and returned to the caller.

DIGITS:

This is an embedded subroutine that calls the system routine OTS$CVT_TU_L. If any

digit other than 0 through 9 is detected, the one byte error logical is set and the stack pointer
altered such that the control returns to the error exit of DEGVAL. The error exit is also taken

if the value returned exceeds the comparison value it receives from DEGVAL.

15

MODULE NAME: FMTDEG

FILE NAME: FMTDEG.MAR

PURPOSE: To format a latitude or longitudeinto an ASCII string representing
degrees,minutesand seconds.

CALLED BY: Seesubroutine/functioncrossreference(appendixA).

CALLING SEQUENCE: CALL FMTDEG (input, string, type)

Where: input = 32-bit floating point value in degrees
string= outputbyte array
type = 0 denoteslatitude

= 1denoteslongitude

CALLS TO: OTS$CVT L TU

DESCRIPTION:
The 32-bit floating point input value is converted to an ASCII character string

representingdegrees,minutesandseconds.For a latitudeinput value,positivedenotesnorth (N)
and negativedenotessouth (S). For longitudeinputs,positive denoteseast (E) and negative
denoteswest(W). No error checkingis doneandtheresultantcharacterstring is in theformat
XDD°MM'SS '' for latitudeandXDDD°MM'SS '' for longitude,where:

X = N, S,E, orW
DDD = degrees
MM = minutes

SS= seconds

The VAX/VMS routine library routineOTS$CVT L TU is called to convert thedecimalvalue
to an ASCII text string.

16

MODULE NAME: FMTTIM

FILE NAME: FMTTIM.MAR

PURPOSE: To convert 4-byte integer time in seconds to an ASCII string

representing hours, minutes, seconds.

CALLED BY: See subroutine/function cross reference (appendix A).

CALLING SEQUENCE: CALL FMTTIM (input, string)

Where: input = long word integer containing seconds past midnight

string = output byte array

CALLS TO: OTS$CVT L TU

DESCRIPTION:

The longword of time (seconds past midnight) is fetched and processed to adjust for any

values greater then one day (86,400 seconds). For purposes of flight path planning, a negative

time could be passed to this routine indicating that the time falls into a previous day. The

negative time is adjusted to create the correct time for the preceding day.

Following the previous tests, the hours, minutes and seconds are computed separately.

Following each computation a call is made to the VAX/VMS library routine OTS$CVT_L_TU

to convert the number to an ASCII value which is stored in the output byte array. The format

of the output string is HHMM:SS where:

HH = hours since midnight
MM = minutes

SS = seconds

No error checking is done except to limit the input time to within + 24 hours.

MODULE NAME: FRMFRQ

FILE NAME: FRMFRQ.MAR

PURPOSE: To converta 2/5 codefrequency(navigationdatabaseformat) to an
ASCII representationof its decimalvalueon the CDU.

CALLED BY: Seesubroutine/functioncrossreference(appendixA).

CALLING SEQUENCE: CALL FRMFRQ (input, string)

Where: input = longwordcontaining2/5 code
string= outputbyte array to containfrequencycode

CALLS TO: None

DESCRIPTION:
This procedureconvertsa navaidtuning frequencyfrom 2/5 codeto ASCII for display

on the CDU. The frequencyis input in a form whereonly the one's digit andthe tenth's digit
are in true 2/5 form. The hundred'sdigit is assumedto alwaysbe 1, the hundredth'sdigit is
limited to zeroor 5 andtheten'sdigit is limited to valuesbetweenzeroandthree. Eachof these
digits is processedseparatelyastheyrequirespeciallimits on their values. The 2/5 code(in the
one's and tenth's digits) is locatedin tablesandthe correspondingASCII valuesaremovedto
theoutputbuffer for display in theform XXX.XX. If a valueis input in which anydigit cannot
be locatedin the 2/5 tables,arow of questionmarksis output to indicatean error.

18

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

ENTRY POINTS:

GET (Function)

GET.MAR

To fetch a dataitem from the navigationdatabase.

Seesubroutine/functioncrossreference(appendixA).

GET_BYTE, GET_LONG,GET_REAL, GET_WORD

CALLING SEQUENCE: value = GET_XXXX(address)

Where: address= addressof desireddatain navigationdatabase.

CALLS TO: None

DESCRIPTION:
This function fetchesthelongwordof databeginningat theaddresspassedandplacesit

in register0. The function type in the FORTRAN calling routine determineswhethera byte,
word, longword,or real is returnedto the caller. No error messages or status is returned.

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

GET_CHAR(Function)

GET_CHAR.MAR

To fetch a characterstring from the navigationdatabase.

Seesubroutine/functioncrossreference(appendixA).

CALLING SEQUENCE:clnf = GET_CHAR(address)

Where: address=

clnf =

CALLS TO: None

19

beginningaddressof desiredcharacterstring in navigation
database.
CHARACTER*N variable

DESCRIPTION:
This functionfetchesdatafrom thenavigationdatabasebeginningwith theinput address.

GET_CHAR is definedin eachmodulethatusesit asa CHARACTER*N function. "N" canbe
different for eachmodulesinceinformationaboutthe returndata is passedby descriptor. No
error messageor statusis returned.

20

MODULE NAME: GRID

FILE NAME: GRID.FOR

PURPOSE: To compute an x,y grid displacement between two positions
designatedby their latitudeand longitudevalues.

CALLED BY: Seesubroutine/functioncrossreference(appendixA).

CALLING SEQUENCE: CALL GRID(Iatl, lonl, lat2, lon2, x, y)

Where: latl =
lonl =
lat2 =
lon2 =
X =

y

32-bit floating point reference latitude (input)

32-bit floating point reference longitude (input)

32-bit floating point destination latitude (input)

32-bit floating point destination longitude (input)

x grid displacement from reference lat/lon to destination

lat/lon in feet(output)

y grid displacement from reference lat/lon to destination

lat/lon in feet(output)

CALLS TO: None

DESCRIPTION:

This subroutine computes an x,y grid displacement between two positions designated by

their respective latitude and longitude values. The local radius values for the north/south and

east/west directions are computed using the reference latitude/longitude values. These reference

values are saved in LATSV and LONSV so that the south radius computations are not repeated

when GRID is called with identical reference values.

The x,y displacement in feet is then computed and returned to the caller. No error

detection is performed, i.e; the values input are treated as real numbers in degrees and no error

status is returned.

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

CALLING SEQUENCE:

Where:

CALLS TO:

21

LOCK

LOCK.MAR

To lock all pagesof a process'working set into memory to prevent
pageswappingby VMS.

Seesubroutine/functioncrossreference(appendixA).

status= SYS$CMEXEC(LOCK)

LOCK = nameof routine to beexecutedin executivemode

$GETJPIW,$LKWSET

DESCRIPTION:
This routine must be in ExecutiveMode to perform its function. It calls the $GETJPI

systemserviceto retrievetheaddressof thefirst freepageat theendof theprogramregion (P0)
of theprocess.The beginningaddressdefaultsto hexadecimal200. The beginningaddressand
endingaddressareusedin a call to the$LKWSET systemserviceto lock the specifiedrangeof
pagesin theworking set(seetheVAX/VMS SystemServicesReferenceManualfor adescription
of systemservices). Register0 is set to indicatea successfulstatusat the beginningof this
routine, thereforeno error statusis returnedandsuccessis assumed.

22

MODULE NAME: LUNAVA

FILE NAME: LUNAVA.MAR

PURPOSE: To locate in the navigation data base, return the address, and

optionally return latitude and longitude of any one of the following:

airfield, navaid or geographic reference point.

CALLED BY: See subroutine/function cross reference (appendix A).

CALLING SEQUENCE: CALL LUNAVA (% REF(name), addr, lat, Ion)

" LUARP (")

" LUGRP (")

Where: name = byte array containing name of item to search for

addr = longword address of item in navigation database (output)

lat = 32-bit floating point latitude in degrees (output)

Ion = 32-bit floating point longitude in degrees (output)

CALLS TO: None

DESCRIPTION:

Entry occurs at one of the following points, depending on whether an airfield, navaid, or

geographic reference point in the navigation data base is to be accessed.

LUARP: airfield

LUNAVA: navaid

LUGRP: Geographic Reference Point (GRP).

For the LUARP entry point, a four character name in the data base will be compared to

the supplied argument. For the LUNAVA entry point, three characters are compared and for the

LUGRP entry point, five characters are compared.

This routine searches the navigation data base for the name of the requested airfield,

navaid or GRP. It searches each longitudinal strip by using the data base index block (_BLK)

to find a pointer to the first GRP, navaid or airfield in a longitudinal strip. If a match is found,
the address of the item is returned. If it is not found, a zero address is returned. If four

parameters are passed to this routine, the latitude and longitude of the requested item are also
returned.

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

CALLING SEQUENCE:

Where:

23

LURTE

LURTE.MAR

To locatein the navigationdatabaseand return the addressof a Jet
airway,Victor airway or Routename.

Seesubroutine/functioncrossreference(appendixA).

CALL LURTE (%REF(name),addr)
CALL LUVIC (")
CALL LUJET (")

name= 6 charnameof route
addr = longword (32-bit) addressof route in navigationdatabase

(AADCOM)

CALLS TO: None

DESCRIPTION:
Control passesto the following entrypoints dependingon whethera Jet Airway, Victor

Airway or Routenamein thenavigationdatabaseis to beaccessed:

LUVIC: Victor airway
LURTE: Routename
LUJET: Jet airway

The Victor airway,Jet airwayor Routenameis enteredvia theControlDisplayUnit (CDU).
This routinesearchesthenavigationdatabaseto find aroute/victorairway/jetairwayof thesame
name. If a matchis found, theaddressis returned,otherwisea zerois returned.

24

MODULE NAME: LURWY

FILE NAME: LURWY.MAR

PURPOSE: To look up a runwayaddressin the navigationdatabaseat a given
airfield.

CALLED BY: Seesubroutine/functioncrossreference(appendixA).

CALLING SEQUENCE: CALL LURWY(%REF(name),afad,ryad[, lat, Ion])

Where: name= 3 char runwayname
afad = (input) airfield longwordaddress
ryad = (output)runway longwordaddress
lat = (output)32-bit floating point latitudein degrees
Ion = (output)32-bit floating point longitudein degrees

CALLS TO: None

DESCRIPTION:
Thisroutinesearchesthenavigationdatabasefor arunwaybeginningat thegivenairfield

address.If a match is found, therunway addressis returned. If not, a zero is returnedasthe
address.If five parameterswerepassedto theroutine,the latitudeandlongitudeof therunway
thresholdis alsoreturned.

25

MODULE NAME: LUSID

FILE NAME: LUSID.MAR

PURPOSE: To locate SID, STAR, or APPROACH names in the navigation

database and return their address and type.

CALLED BY: See subroutine/function cross reference (appendix A).

CALLING SEQUENCE: CALL LUSID (% REF(name), afad, ad, typ)

Where: name = (INPUT) 6 character item name

afad = (INPUT) longword address of airfield

ad = (OUTPUT) longword address of item

typ = (OUTPUT) type of item

1 = STAR

0 = SID

-1 = APPROACH

CALLS TO: None

DESCRIPTION:

This routine searches for the name of the item amongst the Standard Instrument

Departures (SIDs) at the given airfield. If a match is found, the address of the SID is returned

as well as a type value of zero to indicate the item is a SID. If not found, the routine then

searches the Standard Terminal Arrival Route (STAR) names at the given airfield. If a match

is found, the address and a type value of 0 are returned. Otherwise the routine searches the

approach names at the given airfield, and returns the address and type value of -1 if a match is

found. If the item is not found as any of the three types, a zero address is returned.

26

MODULE NAME: MAG_VAR (Function)

FILE NAME: MAG_VAR.MAR

PURPOSE: To compute a magnetic variation estimate at a specified
latitude/longitude.

CALLED BY: Seesubroutine/functioncrossreference(appendixA).

CALLING SEQUENCE: magvar= MAG_VAR(latref, lonref)

Where: latref = 32-bit floating point referencelatitudein degrees
lonref = 32-bit floating point referencelongitudein degrees

CALLS TO: None

DESCRIPTION:
This function is called from FM/FC softwareto computea magneticvariationestimate

at somedesired locality. The method used for computing the magneticvariation is a two
dimensionalinterpolationon valuesfrom a table. Thetablecontainsmagneticvariationvalues
for theentire globewith theexceptionof latitudesaboveNorth 73.125or belowSouth73.125.
Valuesareincludedfor each11.25degreestepin latitudeandlongitude.

This function first determinesthe quadrantcontaining the input position. Then the
magneticvariationvaluesfor the four comersare found in the table. Finally, the following
equationis usedto computethe magneticvariationestimate:

magvar= mI 1 + D_LAT * (m12 - m11)+ D_LON * (m21 - m11) +

D_LAT * D_LON * (m22+ ml 1 - m12 - m21)

where:
ml 1 = magneticvariationat lower left of quadrant
m12 = magneticvariationat upperleft of quadrant
m21 = magneticvariationat lower right of quadrant
m22 = magneticvariationat upperright of quadrant

D_LAT = (latref - LAT11)/11.25
D_LON -- (lonref - LON11)/11.25
LAT11 = latitude at lower left of quadrant
LON11 = longitudeat lower left of quadrant

No error checkingis performedon theinput position.

27

MODULE NAME: MAPCOM

FILE NAME: MAPCOM.MAR

PURPOSE: To mapto one or moreglobal sections.

CALLED BY: Seesubroutine/functioncrossreference(appendixA).

CALLING SEQUENCE: CALL MAPCOM(% VAL(selection),%VAL(access))

Where: selection=

access =

a longword containing a bit string with each 'on' bit

selecting a global section.

for each bit set in 'selection' parameter, a corresponding

'on' bit in this parameter denotes write privilege.

-OR-

CALL MAPCOM(name)

Where: name = address of character string containing a process name.

CALLS TO: $MGBLSC

DESCRIPTION:

This procedure is called to map one or more global sections in physical memory to a

process' virtual memory. The names of the global sections to map and the associated access

privileges for each process are contained in a MACRO language file named MAPTBL.MAR.

Specifically, three global symbols in the MAPTBL.MAR module are referenced by MAPCOM,

these include BITS, ENTRIES, and TABLE. This table is used to find process names when the

second calling sequence (noted previously) is used.

The first calling sequence is used by a process whose name is not included in the default

table, or if selection or access privileges different from the default values for a process are
desired.

The process containing the caller is terminated if the attempt to map the global section

fails (the $MGBLSC VAX/VMS System Service returns an error code).

28

MODULE NAME: MXM

FILE NAME: MXM.MAR

PURPOSE: To multiply matrices.

CALLED BY: None

CALLING SEQUENCE: CALL MXM (ml, rl, cl, m2, c2, m3)

Where: ml = 32-bit floating point matrix 1
rl = 16-bit integernumberof rows in ml
cl = 16-bit integernumberof columnsin ml
m2 = 32-bit floating point matrix 2
c2 = 16-bit integernumberof columnsin m2
m3 = 32-bit floating point outputmatrix

CALLS TO: None

DESCRIPTION:
This routineperformsmultiplicationof matricescontainingsingleprecisionfloating point

data (32 bits). The matricesmust meet the criteria that the numberof columnsin matrix 1 is
equalto the numberof rows in matrix 2.

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

MXT

MXT.MAR

To calculatematrix timesmatrix transpose.

None

29

CALLING SEQUENCE: CALL MXT (ml, rl, cl, m2, r2, m3);

Where: ml = 32-bit floating point matrix 1
rl = 16-bit integernumberof rows in ml
el = 16-bit integernumberof columnsin ml
m2 = 32-bit floating point matrix 2
c2 = 16-bit integernumberof columnsin m2
m3 = 32-bit floating point outputmatrix

CALLS TO: None

DESCRIPTION:
This routineperformsmultiplicationof matricescontainingsingleprecisionfloatingpoint

data(32 bits). M2 is transposedprior to multiplication. The matricesmustmeetthecriteria that
the numberof columnsin matrix 1 is equalto the numberof columnsin matrix 2.

30

MODULE NAME: MXV

FILE NAME: MXV.MAR

PURPOSE: Perform matrix times vector multiplication.

CALLED BY: See subroutine/function cross reference (appendix A).

CALLING SEQUENCE: CALL MXV (m, v, ml, vl, dv)

Where: m = 32-bit floating point matrix

v = 32-bit floating point vector

ml = 16-bit integer count of rows in matrix

vl = 16-bit integer vector length

dv = 32-bit floating point destination vector

CALLS TO: None

DESCRIPTION:

Subroutine MXV multiplies a matrix times a vector, and stores the result in the destination

vector. The matrix and vector are assumed to contain single precision floating-point data (32

bits). The number of columns in the matrix must equal the number of elements in the vector.

31

MODULE NAME: OTS$FLOAT

FILE NAME: OTS$FLOAT.MAR

PURPOSE: To converta floating point valueto ASCII text.

CALLED BY: See subroutine/function cross reference (appendix A).

CALLING SEQUENCE: CALL OTS$FLOAT(value, output, %VAL(f_digits))

Where: value = floating point value

output = output string

f_digits = digits of fraction desired

CALLS TO: OTS$CVI L TI (VAX/VMS RunTime Library Routine)

DESCRIPTION:

This routine converts a single precision floating-point value (32 bits) to ASCII text. Both

the integer portion and fractional portion of the number must be individually less than the

maximum 32-bit integer (4, 294, 967, 296). The smallest fractional portion allowed is 10 "9. If

an overflow in the integer portion or fractional portion of the number is detected, the output

string is asterisk filled and control is returned to the caller. If the fraction width is greater than

the total field width, if there is an integer portion and the fraction width exceeds the total string

length, or if the integer portion is not large enough to contain the integer and a minus sign if the

value is negative, the output string is asterisk filled.

If the input parameters pass the previously described validity checks, the integer portion

and the fractional portion of the number are separated and integerized. A call is then made to

OTS$CVT L TI to convert each portion to ASCII and place them in the output string.

32

MODULE NAME: P_LIST

FILE NAME: P_LIST.MAR

PURPOSE: To provide informationaboutthe parameterlist input to thecaller.

CALLED BY: Seesubroutine/functioncrossreference(appendixA).

CALLING SEQUENCE: CALL P_LIST(cnt,list)

Where: cnt =
list =

returnedbyte valuedenotingargumentcount
string of discretesidentifying eachparameteras null or a
value. A 32-bit integervalue.

CALLS TO: None

DESCRIPTION:
This routinefetchesthe lastargumentpointer from theframebuffer. It thenobtainsthe

parametercount, returns it to the caller in CNT and usesit asa loop counterfor testing the
parameterlist for null or actualparameters. A one-bit in the output word denotesan actual
parameterand a zero-bit indicatesa null parameter.A sampleusageof P_LIST follows:

CALL SUBl(arc,, 3)

SUBROUTINE SUB 1(p I, p2, p3, p4)

CALL P_LIST(cnt, list)

For the example CNT=3 and list = 00000005 hexadecimal.

MODULE NAME: POLAR

FILE NAME: POLAR.MAR

PURPOSE: To convert a unit vector in rectangular coordinates
coordinatesin degrees.

CALLED BY: Seesubroutine/functioncrossreference(appendixA).

CALLING SEQUENCE: CALL POLAR(vector,lat, Ion)

Where: vector=
lat =
Ion =

CALLS TO: ASIND, ATAN2D

33

to polar

32-bit floating point unit vector in rectangular coordinate

location to receive 32-bit floating point latitude in degrees

location to receive 32-bit floating point longitude in degrees

No error checking is performed.

lat = ASIND (vector(l))

lon = ATAN2D (-vector(2), vector (3)).

DESCRIPTION:

This routine accepts a unit vector in rectangular coordinates of the form [X, Y, Z] and

returns polar coordinates in degrees, assuming a unit sphere. The following operations are used

for this operation:

34

MODULE NAME: POSBTS(Function)

FILE NAME: POSBTS.FOR

PURPOSE: To determinewhich quadranta point is in relativeto a clip box.

CALLED BY: Seesubroutine/functioncrossreference(appendixA).

CALLING SEQUENCE: status= POSBTS(x, y, left, fight, top, bottom)

Where: x = x coordinateof endpoint
y = y coordinateof endpoint

left = left sideof box
fight = fight sideof box
top = top of box

bottom= bottomof box

CALLS TO: None

DESCRIPTION:
Thisroutinedeterminesin whichquadrantavectorendpointlies. The x, y coordinateand

the box definition (left, right, top, bottom)are input to POSBTSand it suppliesa returncode
indicatingwherethe endpointlies relativeto thedefinedbox asfollows:

top

bottom

le_ fight

1001 1000 1010

0001 0000 0010

0101 0100 0110

A return code of zero indicates that the vector endpoint is inside the box.

35

MODULE NAME: RET

FILE NAME: RET.MAR

PURPOSE: To provideFORTRANproceduresthecapabilityto returnto modules
other than thecaller.

CALLED BY: Seesubroutine/functioncrossreference(appendixA).

CALLING SEQUENCE: CALL RET(n)

Where: n = desiredreturn level (longword integer)

CALLS TO: None

DESCRIPTION:
This routine usestheinput return level asa loop counteras it unwindsthestackframes.

An input valueof 2, for example,causescontrol to passto the caller's caller. Extremecaution
shouldbeexercisedin the useof this routine sincenoerror checkingis performed. Passingan
incorrectlevel numberhasunpredictableresults.

36

MODULE NAME: SCOS

FILE NAME: SCOS.MAR

PURPOSE: To compute the SINE and COSINE of an angle measured in degrees.

CALLED BY: ACCPRC, APPREF, BLOW, CRBSC, EARTH_VEC, ERAD,

EXECUTE, FIX_ERAD, HNAVFS, HNAVML, HNAVSL, LATCMD,

NEW_POS, PATH, POINTS, PROJPOINT, RSCON, TRALCBA,

UNITVEC, XFORM, XYZIN

CALLING SEQUENCE: CALL SCOSD (angle, sine, cosine)

'_rhere: angle = 32-bit floating point angle in degrees (input)

sine = 32-bit floating point sine of angle (output)

cosine = 32-bit floating point cosine of angle (output)

CALLS TO: None

DESCRIPTION:

The SCOS algorithm is based on the property of sines and cosines that all possible

absolute values for each are contained in any 45* sector, although they may be swapped.

Adjacent sectors are, in a sense, mirror images of each other. For example:

45" 90 °

In__n.putSector Quadrant SINE COSINE
10 ° 0 1 .1736 .9848

80 ° 1 1 .9848 .1736

100 ° 2 2 .9848 -.1736

170 ° 3 2 .1736 -.9848

The code first limits the input to the 0-360 range and normalizes it to a 0-1.0 number

representing its fraction of 360 ° . This fraction is multiplied by 8.0. The integer part of the

product (0-7) is the number of the 45 ° sector of the input. The fractional part of the product is

the normalized fraction of the input within the 45 ° sector. Since the adjacent sectors are mirror

images of each other, but for the swapping, the odd sectors (1,3,5,7) are folded back over the

prior sector by subtracting the fraction from 1.0. The resulting fraction is converted to radians,

the required input for the polynomial expansion (POLYF) which is used to compute the sine and

cosine based on locally defined tables of coefficients (SIN_TBL & COS_TBL).

Lookup tables are used with the sector number as a pointer to determine whether the

values must be swapped, and to determine the signs of the outputs. The sine and cosine are

swapped if the sector Of the input was 1, 2, 5, or 6. The sine becomes negative if the input was

in quadrant 3 or 4, the cosine becomes negative if it was in quadrant 2 or 3.
!

37

MODULE NAME: TIMVAL (Function)

FILE NAME: TIMVAL.MAR

PURPOSE: To convert an ASCII string representing time of day to a longword

integer value representing seconds past midnight.

CALLED BY: See subroutine/function cross reference (appendix A).

CALLING SEQUENCE: itime = TIMVAL(string, length, error)

Where: string

length

error

0

F_16

= byte array containg time

= 16-bit integer string length

= byte to contain error code,

= successful completion

= error

CALLS TO: OTS$CVT_TU_L

DESCRIPTION:

This subroutine converts an ASCII string representing the time of day to a longword

integer value representing seconds past midnight. Two input formats are acceptable as follows:
HHMM or HHMM:SS

where: HH = hour of day
MM = minutes

SS = seconds

Format is determined by the length parameter with '4' denoting HHMM and '7' denoting

HHMM:SS. Any other input length causes an error status to be returned. The input string is

tested to ensure that hours are less then 24, minutes less than 60, and seconds less than 60. The

VAX/VMS Runtime Library routine OTS$CVT_TU_L is called to convert each digit portion of

the time to a longword integer. These values, in seconds, are accumulated and returned to the
caller.

38

MODULE NAME: UNPK

FILE NAME: UNPK.MAR

PURPOSE: To unpacka packeddiscreteand storetheresults.

CALLED BY: Seesubroutine/functioncrossreference(appendixA).

CALLING SEQUENCE: CALL UNPK(input,count,b_array)

Where: input =
count =

4"
-

16-bit packed discrete word

16-bit integer number of bits to unpack

unpacking proceeds left to fight (15-0)

unpacking proceeds right to left (0-15)

b_array = boolean array to contain discrete bytes. Note: address is
incremented for each store if 'count' is positive,

decremented if 'count' is negative.

CALLS TO: None

DESCRIPTION:

Procedure UNPK permits a specified number of bits (count) to be unpacked from the

packed discrete word (input) and stored as discrete bytes at a starting address specified by

b_array. If the COUNT is positive, unpacking proceeds from left to right and the storage address

is incremented for subsequent moves. Otherwise, unpacking goes from fight to left and the

storage address is decremented. Thus, "UNPK(MCONF, 5, MLSC)" unpacks and stores 5

discrete words at MLSC, MLSC + 1, etc.

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

UVC

UVC.MAR

To computea unit vector.

Seesubroutine/functioncrossreference(appendixA).

CALLING SEQUENCE: CALL UVC (V, L, UV)

Where: V = 32-bit floating point vector
L = 16-bit integervector length

UV = destination32-bit floating point unit vector

39

DESCRIPTION:
SubroutineUVC computestheunit vectorwith directionV andlength L, definedas:

UV = V / ABS(V). No error checking is performed.

CALLS TO: MTH$SQRT_R3 (See VAX/VMS Runtime Library Mathematic

Manual)

40

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

CALLING SEQUENCE:

Where:

CALLS TO:

DESCRIPTION:

VCP

VCP.MAR

To computea vectorcrossproduct.

Seesubroutine/functioncrossreference(appendixA).

CALL VCP (U, V, W)

U = 3 dimensional32-bit floating point input vector
V = 3 dimensional32-bit floating point input vector
W = 3 dimensional32-bit floating point output vector
W=UXV

None

SubroutineVCP computesthecrossproductof two 3 dimensionalvectors,definedas:
U X V = (u2 v3 - u3 v2), (u3 vl - ul v3), (ul v2 - u2 vl). This computationis performedin
doubleprecisionmode. Theresultingvector (W) is convertedto single-precisionfloating point
(32 bit). No error checkingis performed.

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

VDP (Function)

VDP.MAR

To performa vector-dot-producton two 3-dimensionalvectors.

Seesubroutine/functioncrossreference(appendixA).

41

CALLING SEQUENCE: Dot_Product= VDP(U, V)

Where: U = 3 dimensional32-bit floating point vector
V = 3 dimensional32-bit floating point vector

CALLS TO: None

DESCRIPTION:
This routine performsa dot-productfunctionon two 3-dimensionalvectors. E.g, DP =

(ul vl) + (u2 v2) + (u3 v3). No error checkingis performed.

42

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

VMAX (Function)

VMAX.MAR

To find thelargestelementof a vector.

Not Used

CALLING SEQUENCE: A = VMAX(vector, length)

Where: vector= 32-bit floating point vector
length= 16-bit integervector length

CALLS TO: None

DESCRIPTION:
VMAX finds andreturnsthelargestelementof avector. No errorcheckingis performed.

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

VMG (Function)

VMG.MAR

To computevector magnitude.

Seesubroutine/functioncrossreference(appendixA).

CALLING SEQUENCE: MAG = VMG (vec,vec_lgth)

vec = 32-bit floating point vectorWhere:
vec_lgth= 16-bit integervector length

CALLS TO: MTH$SQRT_R3 (See VAX/VMS
manual)

Runtime Library mathematics

No error checkingis performed.

MAG = SQRT(vl vl + v2 v2 + v3 v3 + ...vnv,) = SQRT(V • V) .

43

DESCRIPTION:
SubroutineVMG computesthe magnitudeof a vector,definedas:

44

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

VMIN (Function)

VMIN.MAR

To find the smallestelementof a vector.

Not Used

CALLING SEQUENCE: A = VMIN(vector, length)

Where: vector = 32-bit floating point vector
length= 16-bit integervector length

CALLS TO: None

DESCRIPTION:
VMIN finds

performed.
and returns the smallest elementof a vector. No error checking is

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

CALLING SEQUENCE:

Where:

CALLS TO:

DESCRIPTION:
VSUM producesthesumof the elementsof a vector.

VSUM (Function)

VSUM.MAR

To computethe sumof theelementsof a vector.

Not Used

A = VSUM (vector,length)

vector= 32-bit floating point vector
length= 16-bit integervector length

None

45

No error checkingis performed.

46

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

CALLING SEQUENCE:

CALLS TO:

DESCRIPTION:

VXM

VXM.MAR

To performvector timesmatrix multiply.

CF1LT

CALL VXM(V, M, VL, MW, U)

Where: V = 32-bit floating point vector
M = 32-bit floating point matrix

VL = 16-bit integervector length
MW = 16-bit integermatrix width (# columns)

U = 32-bit floating point destinationvector

None

SubroutineVXM multipliesavectortimesamatrix,andstorestheresultin thedestination
vector. Theinput vector lengthmustequalthe numberof rows in the matrix or theresultsare
unpredictable.No error checkingis performed.

MODULE NAME:

FILE NAME:

PURPOSE:

CALLED BY:

XYZ

XYZ.FOR

To create a unit vector pointing from the earth's
latitude/longitudeon thesurface.

Seesubroutine/functioncrossreference(appendixA).

CALLING SEQUENCE: CALL XYZ(lat, Ion, vector)

Where: lat =
Ion =

vector=

CALLS TO: SCOSD

47

center to a

32-bit floating point latitudeon the earth'ssurface(input)
32-bit floatingpoint longitudeon theearth'ssurface(input)
3 dimensional32-bit floating point unit vector computed
using lat/lon (output)

DESCRIPTION:
This moduleconvertsfrom polarcoordinatesin degreesto thecorrespondingunit vector

in rectangularcoordinates.The outputunit vectorhasthe following form:

vector(l) = sin(lat)
vector(2)= -sin(Ion)cos(lat)
vector(3)= cos(Ion)cos(lat)

No error checkingis performed.

48

APPENDIX A

SUBROUTINE/FUNCTIONCROSSREFERENCE

49

ANGL is calledby routines:
DATSEL DMA ENGAGE_CAS ERAD FILL HNAVFS HNAVSL
HOLD_INIT HOLD_INPUT INBOUND INBRG INT_LEG LATCMD
LEGSW MLOG MSPLGC NAVEXC PFD_NASA POINTS PTHPOS
RADIAL RCOM REFRESH_HOLD RWYMGR SELTRK STAR
TOPEXC TRALCBA WINDOW

ASSIGN is calledby routines•
DSPFST DSPSLW FCFAST FMFAST SLOW

BCDTIM is calledby routines•
IDENT

CLIP is calledby routines•
AREAS DMA LEG MAP_AIRWAY RUNWAY TURN

CLRBUF is calledby routines•
CLEAN_CON INIT_PLAN XLAT_RTE

C_HDL is called by routines •
DSPFST DSPSLW FCFAST FMFAST SLOW

DEGVAL is called by routines :

INITUP WPT_ID

FMTDEG is called by routines •

ACTION AIR_PAGE FUNC_INP_HX INITPOS INITUP PROCESS_ARP

PROCESS_GRP PROCESS_NAV PROGRESS

FMTI'IM is called by routines •

DASDUMP DSP_TIME ECHO_TIME FLT_TYPE HOLD_INPUT IDENT

LEG_END PROGRESS REFRESH_HOLD RTA_LN10 RTA_LN9
SNAPDUMP TEXT

FRMFRQ is called by routines •

APPREF PROCESS_NAV PROGRESS

GET_CHAR is called by routines •

ACTION APPREF CLEAN_PPT DSPOT ECHO ORG_RWY PROGRESS

SET_SIDLINE STRIPS WAYPOINT WPT

GRID is called by routines •

AREAS ARPSMB COMP_ANG COMP IP DTG FIND_LEG_RAD

50

GET_XY
LEG_BRNG NAVAID NAVEXC NAVMLS OPTION PASSBY PLAN
POS_INFO PTHPOS RADIAL RUNWAY STRIPS TURN XYPOS

LOCK is calledby routines•
DSPFST DSPSLW FCFAST FMFAST SLOW

LUNAVA is calledby routines•
ACTION DATA_iNPFIX PROCESS_NAV WPT_ID

LURTE is calledby routines:
COMPANY RTE_ID

LURWY is calledby routines '
DATA_IN MOD_ROUTE PROCESS_RWY WPT_ID

LUSID is calledby routines•
FIND_RTE MOD_ROUTE

MAG_VAR is calledby routines•
ERAD INTERCEPT MAGV RTE_INTC WPT WPT_ID

MAPCOM is calledby routines:
DDSTAR DSPFST DSPHDL DSPSLW DSTAR FCFAST FMFAST
HDL SLOW VIEW

MXV is calledby routines•
ACCPRC CFILT CRBSC GPSPRC SCREEN XFORM

OTSSFLOAT is calledby routines:
APPREF EPRLIM FIX_INFO FLTTYPE PFINIT PROGRESS
REFRESH_HOLD SHOW_GPS TKOFF

P_LIST is calledby routines•
MAKE_WPT NEW_CON

POLAR is called by routines •
PROJECT

POSBTS is called by routines •
ARPSMB NAVAID NAVEXC OPTION PLAN RADIAL RUNWAY

STRIPS

RET

TIMVAL

UNPK

UVC

VCP

VDP

VMG

VXM

XYZ

is called by routines •

FIND_EMPTY WPT_ADDR

is called by routines •

IDENT TIME_IN

is called by routines '
MLSEX MSPLGC

is called by routines :
AAA HVGUID PATH PROJECT

is called by routines •
AAA HVG2 PATH STAR TRALCBA

is called by routines '
AAA AB_IP_LL FIND_LEG_AB HVG2

TRALCBA

is called by routines •

CRBSC CTLBLK PATH STAR

is called by routines :
CFILT

is called by routines •
PATH STAR

HVGUD PATH STAR

51

I form Appro red
REPORT DOCUMENTATION PAGE o_._,,Vo o7o,_-o188

Publ;c report;ng burden rcr this collect;on of+nformatlon is estimated to averal[e J hour per response includ+nE the torte for reviewing instruct;+ns search;nl_ e..xlstingdata sources
gathering and maintaining the data needed and completing and reviewing the collection cf inforn'aticn Send corcment; regarding this Burden estimate or any other aspect of this
collectic.n of inferrrati_n including au_egtions for reducing this burden t¢_Vashington Headquarter_ Servlcec D_rectorate (or Infcrrratlcn Operatlcns and Re'pc_ts 1215 Jefferson
Davis Highway Suite 1204 ArLington VA 22202 4302 an_ to the O(Pce of Management and Budget Paperwork Reduction Project (0704 0188) _"qashingtcn _ 20503

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE

April 1993

4. TITLE AND SUBTITLE

Advanced Transport Operating System (ATOPS)
Utility Library Software Description

3+ REPORT TYPE AND DATES COVERED

Contractor Report (June 1988 - Nov. 1991)
m

5. FUNDING NUMBERS

C NAS1-19038
WU 505-64-13

6. AUTHOR(S)

Winston C. Clinedinst, Christopher J. Slominski, Richard W. Dickson,

and David A. Wolverton

71 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Computer Sciences Corporation
3217 North Armisteacl Avenue

Hampton, VA 23666

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

8. PERFORMING ORGANIZATION

REPORT NUMBER

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-191469

]1. SUPPLEMENTARY NOTES

Langley Technical Monitor: Robert A. Kudlinski
Final Report

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

•Unclassified-Unlimited

Subject Category 06

iiii
13. ABSTRACT (Maximum 200 words)

The individua] software processesused in the flight computers on-board the ATOPS aircraft have many common
functional elements. A library of commonly used software modules was created for general uses among the
processes. The library includes modules for mathematical computations, data formatting, system database
interfacing, and condition handling. This document describes the modules available in the library and their
associated calling requirements.

]4. SUBJECTTERMS
ATOP$, Flight software, Utility software, VAX, VMS

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATIOI_ 19. SECURITY CLASSIFICATIOI_

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

_ISN 7540-01-280- 5500

1S. NUMBER OF PAGES

54

16. PRICE CODE

AQ4
20. LIMITATION

OF ABSTRACT

UL

Standard Form 29B(Rev. 2-89)
Prescr;bed by ANSI Std. Z39-18
298-102

